Correspondance avec la norme NF EN 197-5 (nouveaux ciments bas carbone)

Élément d'information	Élément d'information	Élément d'information	Élément d'information
CEM II/C-M (Portland composé multi-ajouts)	Incorporation de plusieurs constituants principaux (clinker + laitier + calcaire + pouzzolane, etc.) ; clinker réduit à 50–65 % ; classes 32,5 à 52,5	Extension du CEM II classique (un seul ajout dans 197-1) ; meilleure flexibilité sur les combinaisons	Réduction CO ₂ de 20–30 % ; conserve ouvrabilité et durabilité ; compatible NF EN 206 pour bétons courants.
CEM II/C-M (S-L) (laitier + calcaire)	Constituants principaux : 36–50 % laitier et 6–20 % calcaire	Non couvert dans 197-1 ; combinaison multi-ajouts reconnue dans 197-5	Bon compromis résistance / empreinte carbone ; réduction $\text{CO}_2 \sim \!\! 25\%$; bon comportement en milieux légèrement agressifs.
CEM II/C-M (P-LL) (pouzzolane + calcaire)	Combinaison d'ajouts naturels (pouzzolane) et minéraux (calcaire) ; améliore compacité et résistance chimique	Prolonge la logique du CEM II/A-P ; ajout combiné reconnu seulement dans 197-5	Réduction CO ₂ de 20–30 % ; bon comportement en environnements agressifs ; conforme NF EN 206.
CEM II/C-M (multi-ajouts expérimentaux)	Autorise des combinaisons locales (ex. laitier + argile calcinée) sous conditions de performance	Non reconnu dans 197-1 ; réservé aux pays ayant adopté 197-5	$\label{eq:Transition} Transition vers ciments « territoriaux » bas carbone ; valorisation de ressources locales ; réduction CO_2 variable (20–35 %).$
CEM VI/A (S-P-L)	Clinker ≈ 45–55 % ; ajouts combinés : laitier, pouzzolane, calcaire	Non existant dans 197-1 ; composition complexe encadrée par 197-5	Réduction CO ₂ ~35–40 % ; équilibre entre performance et durabilité ; demande maîtrise fine du broyage.
CEM VI/B (S-V-L)	Constituants principaux : 50–65 % (laitier + cendres volantes + calcaire) ; classes 32,5 et 42,5	Type entièrement nouveau ; approche multi-ajouts absente de 197-1	Réduction CO ₂ ~40–45 % ; favorise économie circulaire et durabilité ; compatible NF EN 206 avec montée en résistance plus lente.
CEM VI (générique)	Clinker réduit à 35–50 % ; ajouts variés (laitier, cendres, fumées de silice, calcaire)	Absent de 197-1 ; élargit le champ aux ciments « très bas carbone »	Objectif : réduction massive du CO ₂ (jusqu'à –45 %) ; nécessite adaptation des formulations béton et suivi normatif.

beton-guide.com