Types de ciments selon NF EN 197-1

Type de ciment	Nombre de variantes	Constituants dominants	Description / Composition générale	Usage principal / Remarques
CEM I – Ciment Portland	1	Clinker (95 à 100 %) + constituants secondaires (≤ 5 %)	Ciment constitué presque exclusivement de clinker Portland, avec un faible pourcentage d'ajouts mineurs (gypse, fillers).	Usage général : béton armé, précontraint, éléments structurels. Durcissement rapide et haute résistance initiale.
CEM II – Ciment Portland composé	19 (II/A et II/B selon l'ajout : S, V, W, P, Q, D, L, LL, T)	Clinker (65 à 94 %) + ajouts principaux (laitiers, cendres volantes, pouzzolanes, calcaire, fumée de silice, etc.)	Mélange de clinker et d'un ou plusieurs constituants principaux : S (laitier), V (cendres volantes siliceuses), W (cendres volantes calciques), P/Q (pouzzolanes naturelles/artificielles), D (fumée de silice), L/LL (calcaire).	Usage courant en construction : bétons structurels et non structurels. Permet d'adapter les performances (chaleur, durabilité, teinte).
CEM III – Ciment de haut-fourneau	3 (A, B, C selon taux de laitier)	Clinker (5 à 64 %) + laitier granulé de haut-fourneau (36 à 95 %)	Ciment à base de clinker et de laitier de haut-fourneau, proportion variable. Hydratation lente mais excellente durabilité.	Idéal pour ouvrages massifs, fondations, bétons en milieu agressif, ouvrages maritimes. Faible chaleur d'hydratation.
CEM IV – Ciment pouzzolanique	2 (A, B selon taux d'ajouts)	Clinker (45 à 89 %) + pouzzolanes naturelles ou artificielles (11 à 55 %)	Incorporation de matériaux pouzzolaniques qui réagissent lentement avec la chaux libérée lors de l'hydratation.	Utilisé pour bétons à durabilité accrue, bonne résistance chimique. Hydratation lente.
CEM V – Ciment composite	2 (A, B selon taux d'ajouts combinés)	Clinker (20 à 64 %) + laitier (18 à 50 %) + cendres volantes ou pouzzolanes (18 à 50 %)	Total des ajouts combinés : 36–80 %	Convient aux bétons durables et écologiques. Réduit les émissions de CO ₂ et la chaleur d'hydratation.

beton-guide.com